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Abstract

In this report we study space-mapping and manifold-mapping, two
multi-level optimization techniques that aim at accelerating expensive op-
timization procedures with the aid of simple auxiliary models. Manifold-
mapping improves in accuracy the solution given by space-mapping. In
this report, the two mentioned techniques are basically described and then
applied in the solving of two minimization problems. Several coarse mod-
els are tried, both from a two and a three level perspective. The results
with these simple tests confirm the speed-up expected for the multi-level
approach.

1 Introduction

Many optimization problems in practice are based on models that typically
have an excessive computational cost. A typical example is a finite element
discretization. Accurate models yield precise solutions but at the expense of a
time-expensive optimization procedure. By using fast (simplified) models one
can expect some gain in the computational cost. But of course, the solution
found will be only an approximation of the desired one; the simpler the model,
the greater the error. According to space-mapping terminology we will denote
the two types of models described as fine and coarse, respectively.

The purpose of this research is the combined employment of these models for
precise and efficient optimization algorithms. The main idea is as follows: the
coarse model optimum approximates efficiently the fine one, the fine model cor-
rects that estimate using the coarse model optimization routine as a workhorse
in an iterative procedure. We see a clear analogy with multigrid [1, 2] and defect
correction [3] algorithms. Only the precise forward problem is solved; inversion
is carried out with respect to the coarse model. And as with multigrid, provided
a hierarchy of models is available, we can proceed in a multi-level fashion.
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Figure 1: Post-processing of fine and coarse discretizations yield fine and coarse
models. In this figure, Poisson equation solved with two different grids.

2 Multi-Level Optimization

Let us consider an optimization problem in the design space X ∈ Rn. The fine
model f : X ⊂ Rn → Rm is also defined on that space and tries to meet the
problem specifications y ∈ Y ⊂ Rm. The associated optimum is referred to as
x∗f and we will assume it to be unique. Formally

x∗f = argminx∈X‖f(x)− y‖. (1)

If for example X is a non-empty compact set and f is continuous, this problem
has always at least one solution. The design is called reachable if the optimum
meets the problem specifications, i.e., f(x∗

f ) = y.
The coarse model c : Z ⊂ Rn → Rm is defined over a general set Z ⊂ Rn.

The type of coarse models used in this report take Z = X. The coarse optimum
x∗c minimizes the proximity of the coarse model with respect to the problem
specifications

x∗c = argminx∈Z‖c(x)− y‖. (2)

We will also assume uniqueness for x∗
c . Examples of fine and coarse models

could be any post-processing of the solution of a discretized partial differential
equation. Finer discretizations yield in general more accurate models (Figure 1).

The two optimization procedures described below are based on alignments of
the two models. Space-mapping operates in the design space X and manifold-
mapping in the target space Y .

2.1 Space-Mapping

Space-mapping [4, 5] aligns the two models. The space-mapping function
p : X → Z is introduced with that purpose

p(x) = argminz∈Z‖c(z)− f(x)‖. (3)

The quantity ‖c(z)− f(x)‖ can be understood as a measurement of the model
misalignment (see Figure 2). According to the definition of p, we can expect
that c(p(x)) ≈ f(x) and thus that the space-mapping solution

x∗sm = argminx∈X‖c(p(x))− y‖ (4)

improves the approximation of the fine optimum given by x∗
c . Space-mapping

can be interpreted as a general preconditioner since when applied to a linear
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Figure 2: Misalignment and space-mapping function.
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The left figure shows the misalignment function ‖c(z)− f(x)‖ for a fine
and a coarse model for the problem in Section 3.2. Darker shading shows
a smaller misalignment. The right figure shows the identity function and,
for different coarse models, their corresponding space-mapping functions.

x0 = x∗
c = argminx∈Z‖c(x)− y‖

B0 = I
p0(x) = p(x0) + B0 (x− x0)
for k = 0, 1, . . . , while . . .
do

xk+1 = argminx∈X‖c(pk+1(x))− y‖
hk = xk+1 − xk

break if . . .

Bk+1 = Bk +
(p(xk+1)−p(xk)−Bk hk)hT

k

hT

k
hk

pk+1(x) = p(xk+1) + Bk+1 (x− xk+1)
enddo

Figure 3: The space-mapping algorithm.

problem, we obtain linear preconditioning [6]. The actual space-mapping algo-
rithm used in this report is shown in Figure 3.

We should stress that an evaluation of p is at least as expensive as one of the
fine model. Therefore, it is not clear that the computation of x∗

sm offers some
advantages with respect to x∗

f . But in practice, the space-mapping function is
considerably simpler than the fine model, and thus, easier to approximate. In
many cases p is a slight deviation of a linear function and this fact allows a fast
computation of the space-mapping solution. Some space-mapping functions are
shown in Figure 2.

The space-mapping solution x∗
sm does not always coincide with the fine op-

timum x∗
f . A space-mapping function is perfect iff p(x∗

f ) = x∗
c . Then, if p is

perfect and injective, we have x∗
sm = x∗

f [6]. Though injectivity is not really
a strong requirement, only in very special problems we can expect the space-
mapping function to be perfect (it is easy to check that this is the case for
any reachable design). But very often, a mapping is perfect by approximation,
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Figure 4: Manifold-mapping model alignment.

yielding space-mapping solutions that are acceptable in practice.

2.2 Manifold-Mapping

In [6] we analyze under which circumstances space-mapping yields the precise
optimum. Essentially it depends on the behavior of the manifolds f(X) and
c(Z). In general these sets are different in the region close to the specifications y,
and this is the main reason why x∗

sm does not always coincide with x∗
f . The

manifold mapping S : c(Z)→ f(X) is introduced in [6] with the aim of correct-
ing the misalignment between the manifolds f(X) and c(Z). With S, the point
c(x∗

f ) is mapped to f(x∗
f ) and the tangent plane for c(Z) at x∗

f to the tangent
plane for f(X) at x∗

f (see Figure 4). With these conditions, the optimum for
S(c(x)) coincides with the fine optimum

x∗f = argminx∈X‖S(c(x))− y‖ . (5)

The mapping S is assumed to be affine and can be determined in a non-unique
way. It is also not known a priori, because it depends on the solution of the
optimization problem. We propose an algorithm (see Figure 5) that, when it
converges, yields the mapping S and, as a consequence, the desired optimum
x∗f . The † denotes a pseudoinverse operator.

This algorithm can be slightly simplified. It can be shown that it is asymp-
totically equivalent to

xk+1 = argminx∈X‖c(x)− ȳk‖ (6)

where ȳk = c(xk)− [∆C ∆F †+ (I −Uc UT
c )] (f(xk)−y). The model alignment

can also be improved with an additional mapping p̄ : X → Z. In the algorithm
in Figure 5, p̄ is taken as the identity.

The desirable properties of the mapping S are fulfilled at convergence. This
is because the matrix Sk satisfies

Sk (c(xk)− c(xk−l)) = f(xk)− f(xk−l) (7)

for k > 0 and l = 1, · · · ,min (n, k). Then, since Sk c(xk) = f(xk), in case of
convergence the limit is the fine optimum x∗

f .
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x0 = x∗
c = argminx∈Z‖c(x)− y‖

S0 • = f(x0) + (• − c(x0))
for k = 0, 1, . . . , while . . .
do

xk+1 = argminx∈X‖Sk(c(x))− y‖
break if . . .
∆F = [f(xk+1)− f(xk), · · · , f(xk+1)− f(xmin (n,k))]
∆C = [c(xk+1)− c(xk), · · · , c(xk+1)− c(xmin (n,k))]
∆F = Uf Σf V T

f singular value decomposition
∆C = Uc Σc V T

c singular value decomposition
Sk+1 = ∆F ∆C† + (I − Uf UT

f ) (I − Uc UT
c )

Sk+1 • = f(xk+1) + Sk+1 (• − c(xk+1))
enddo

Figure 5: The manifold-mapping algorithm. The † denotes a pseudoinverse
operator.

2.3 Multi-level Optimization

In some occasions, a whole hierarchy of models (ordered with respect to com-
putational cost or accuracy) is available. This is the case of any optimization
procedure that is based on solving a discretized partial differential equation by
means of any type of grid. Inspired by multigrid we can apply the two-level
ideas described up till now.

The fine optimum is computed through a sequence of coarse model opti-
mizations. Each of these optimizations can be accelerated if some other efficient
two-level approach is found. It can be seen that the convergence of the two-level
approach is related to the similarity between the fine and the coarse model [6].
Thus, the lack of convergence between two distant models, can be alleviated
by introducing an intermediate one, at the expense of (slightly) increasing the
total computational cost. The real difficulty in the multi-level approach is the
process of determining the appropriate sequence of coarse models.

3 Test problems

The methods described in the previous sections will be applied in the solving of
two test problems. The first one represents a simple case of partial differential
equation based optimization. We control the quality of the underlying models
by selecting the size of the associated grid. The second one is more realistic
and is related to photonic transmission and absorption in random media. The
length of the propagation interval and the number of experiment realizations
are used to tune the fidelity of the response obtained.

In the algorithms in Figure 3 and Figure 5 the user is free to choose the
optimizers in the argmin function. In this report we use two different schemes:
Nelder-Mead simplex [7] and Powell’s Cobyla [8]. Both are derivative-free local
minimizers and they often present a robust though slow behavior. With no other
reason than diversity in the schemes applied, we will associate Powell’s Cobyla
with space-mapping and Nelder-Mead simplex with manifold-mapping. The
stopping criterion chosen for each algorithm is the same. Every optimization
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process stops when the increase of the Euclidean norm of the design parameters
is smaller than 10−4.

3.1 A Poisson-based optimization

We first consider the Poisson equation in the unit square [0, 1]2 with homo-
geneous Dirichlet boundary conditions. There are two fixed point sources at
(1/4, 1/2) and (1/2, 3/4) and their unknown magnitude is the two-dimensional
design variable x = (x1, x2)

T , corresponding x1 and x2 to the first and second
source respectively. The model response is a four-dimensional vector with the
solution of the discretized partial differential equation at (3/8, 5/8), (5/8, 5/8),
(5/8, 3/8) and (3/8, 3/8). The specifications are equal to y = (1, 1, 1, 1)T .
The fine model f is based on a 257 × 257 rectangular grid and it is computed
in around three seconds by means of the backslash operator in MatLab and in
around seven when implemented in C and conjugate gradient is used for invert-
ing the linear system. The coarse model c considers only a 7 × 7 rectangular
grid and it is around 3000 times faster than the fine one in the first case and
1400 times in the second. Again, for sake of variety, the backslash operator is
employed in conjunction with Powell’s Cobyla and conjugate gradient with the
Nelder-Mead simplex scheme. The sets X and Z coincide and they are equal to
[0.01, 100]2. We use the following cost function F (x) for the fine model

F (x) =
‖f(x)− y‖2
‖y‖2

× 100 , (8)

i.e., a relative Euclidean norm of the model discrepancy. A barrier term is
added to take into account the compact design space X. The cost function
for the coarse model is analog to that for the fine one. With the specifications
above, F (x) has a unique minimum.

Table 1 shows the results of the optimization for the four schemes tried.
Both Powell’s Cobyla and Nelder-Mead simplex start from the coarse model op-
timum x∗

c = (4.0992, 6.3160)T . For this reason, the field corresponding to the
number of coarse model evaluations for these two mentioned methods, is not
in blank. Nelder-Mead simplex yields the fine optimum x∗

f = (4.0761, 4.0761)T

and Powell’s Cobyla solution practically coincides, with roughly the same com-
putational effort. Space-mapping represents an important speed-up with respect
to the one-level approach, but the solution differs from the precise optimum1 2.
Manifold-mapping conserves the low computational cost of space-mapping and
according to theory, gives the correct answer. Table 2 shows a comparison of
both multi-level schemes, iteration by iteration until the stopping criterion is
met.

A three-level approach was considered for manifold-mapping applied to this
test problem. The fine model was again based on a 257 × 257 grid and the
two companion models were constructed upon a 33 × 33 and a 4 × 4 grid.
These two coarse models are around 250 and 3000 times faster than the fine one
respectively. Though even simpler models could be tried (3 × 4 for example),

1Indeed, perfect mapping is not held: p(x∗
f
) = (3.9171, 6.7854)T 6= x∗c .

2The results obtained with space-mapping combined with Nelder-Mead are essentially the
same as those with Powell’s Cobyla: identical final design and cost function in 6 and 818 fine
and coarse model evaluations respectively.
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Table 1: Results for the Poisson-based optimization.

#f evals. #c evals. F (·) Final design
Cobyla 90 92 28.129 (4.0762, 4.0760)T

Nelder-Mead 74 125 28.129 (4.0761, 4.0761)T

SM 7 1175 28.194 (4.3165, 3.7769)T

MM 5 424 28.129 (4.0761, 4.0761)T

Table 2: Iteration history for the Poisson-based optimization.

SM MM

# iter. #(f , c) evals. (F (·), hk) #(f , c) evals. (F (·), hk)
1 (1, 187) (39.354, 4.1500) (1, 126) (39.354, 4.1500)

2 (2, 447) (36.388, 4.1500) (2, 220) (36.388, 4.1500)

3 (3, 676) (28.196, 1.6400) (3, 303) (28.340, 1.4500)

4 (4, 867) (28.194, 0.0189) (4, 369) (28.129, 0.6070)

5 (5, 980) (28.194, 0.0026) (5, 424) (28.129, 0.0000)

6 (6, 1105) (28.194, 0.0002)

7 (7, 1175) (28.194, 0.0000)

Powell’s Cobyla and space-mapping (SM) are used in conjunction with conjugate
gradient and Nelder-Mead simplex and manifold-mapping (MM) with MatLab’s
backslash operator. This yield coarse models around 1400 and 3000 times faster
than the fine ones in the first and second case respectively. F (·) represents the
cost function. The stopping criterion is in every case hk = ‖xk+1−xk‖2 < 10−4.

the last coarse model can be consider as the lower limit in the hierarchy. Table
3 shows the results concerning the three-level approach.

We denote the three-level scheme by MM-(257/33/4). MM-(257/33) and
MM-(257/4) refer to the two-level algorithms that compute the fine optimum
aided by the 33× 33 and 4× 4 grid based models respectively. MM-(257/33)
presents a monotonous convergence in just four iterations. With the three-level
approach, the convergence history is almost identical and the total computa-
tional cost is slightly reduced (from 16.84 seconds to 14.95). MM-(257/4) also
yields the fine optimum, but the cost function does not decrease monotonously
(the total computing time is 16.31 seconds)3.

The three-level manifold-mapping approach does not represent a significant
speed-up with respect to the two-level scheme. But we can think of the multi-
level idea as a procedure as efficient as any based on two levels, but with the
additional advantage of a higher robustness. Multi-level manifold mapping is
subject of further research. Whenever a hierarchy of models is available, it
would be useful to know how to select the best intermediate ones.

We will conclude this section with a simple experiment, in which the poten-
tial of coarsening techniques similar to those employed in algebraic multigrid
[9, 2] is studied. Again we are interested in the Poisson equation in the unit
square (homogeneous Dirichlet boundary conditions), but this time with a vary-

3Two-level space-mapping is not performing as its manifold-mapping counterpart, when the
fine model is aided with that extremely coarse model. The space-mapping solution obtained
x∗sm = (0.0100, 7.3243)T lies very far away from the precise minimum.
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Table 3: Three-level approach for the manifold-mapping Poisson-based opti-
mization.

MM-(257/33)
# iters. #f evals. #c evals. F (·) ‖xk+1 − xk‖2

1 1 (120, 0) 28.130

2 2 (176, 0) 28.129 0.0135

3 3 (230, 0) 28.129 0.0012

4 4 (283, 0) 28.129 0.0000

MM-(257/4)
# iters. #f evals. #c evals. F (·) ‖xk+1 − xk‖2

1 1 (0, 105) 34.881

2 2 (0, 175) 29.165 1.4900

3 3 (0, 237) 30.454 0.9010

4 4 (0, 313) 28.129 2.1100

5 5 (0, 369) 28.129 0.0000

MM-(257/33/4)
# iters. #f evals. #c evals. F (·) ‖xk+1 − xk‖2

1 1 (5, 365) 28.130

2 2 (10, 693) 28.129 0.0134

3 3 (15, 1024) 28.129 0.0012

4 4 (20, 1352) 28.129 0.0000

MM-(257/33/4) denotes the three level approach based on the 257 × 257,
33 × 33 and 4 × 4 grid based models. MM-(257/33) and MM-(257/4) re-
fer to the two-level algorithms that consider the two previous coarse models.
These two coarse models are around 250 and 3000 times faster than the fine
one respectively. Every linear system is solved by means of MatLab’s backslash
operator. Nelder-Mead simplex was used for the coarsest minimization in all
cases.

ing diffusion coefficient that takes the value 1 inside a circle centered in (0.5, 0.5)
with radius 1/3 and 106 in the remaining part of the domain. The rest of the
description is analog to the problem studied above. The fine model f is based
on a 257 × 257 rectangular grid. The first coarse model is obtained by tak-
ing a rectangular grid with larger step size (geometric coarsening). The second
coarse model is derived with the aid of algebraic multigrid. The coarsening
used by algebraic multigrid aims at the essential structure of the underlying
linear system and this enables to capture features that sometimes escape to the
traditional geometric approach. All the operators needed (restriction, prolon-
gation and coarse linear system) are obtained with the classical Ruge-Stuben
coarsening [2].

The performance of manifold-mapping using both coarse models is
compared in Table 4 for a reachable design problem with specifications
y = f((12.345, 54.321)T ) = (3.9622, 3.4256, 1.0644, 1.6010)T . The two models



DE&CT 60724:17h01 9

Table 4: Results for manifold-mapping and geometric and algebraic multigrid
based coarse models.

grid size MG / levels AMG #f evals. #c evals. speed-up

182 / 2 5 / 2 361 / 158 0.8 / 7.0

92 /3 5 / 4 362 / 300 2.4 / 4.0

47 / 4 5 / 5 377 / 658 6.3 / 2.8

25 / 5 5 / 5 367 / 673 10.4 / 2.6

14 / 6 5 / 5 383 / 611 17.2 / 3.8

Every row expresses the performance of manifold-mapping using two different
coarse models. The number of degrees of freedom of the grid used for solving the
partial differential equation is about the same. The number of fine and coarse
model evaluations needed to solve the problem is also shown and additionally
the speed-up factor when these two methods are compared with the Nelder-
Mead simplex scheme. The first number refers to the geometric coarsening and
the second one to the algebraic multigrid approach. The stopping criterion is
in every case hk = ‖xk+1 − xk‖2 < 10−4.

rely on discretizations with a similar number of degrees of freedom4. In every
row, the results for two coarse models of different type are shown. The first
number in every field refers to the geometric coarsening and the second one to
the algebraic multigrid approach. The speed-up refers to the performance of
Nelder-Mead simplex starting from the optimum of the geometric coarse model.
The algebraic multigrid idea seems useful when the coarse model approximates
faithfully the fine one. For really simple coarse models, the standard approach
is more efficient. Better results for the algebraic based technique are expected
in more complicated problems, where algebraic multigrid truly represents an
improvement over the traditional geometric scheme.

3.2 A photon transport based problem

In this problem we study the performance of the two-level methods explained
above with a simplified problem of practical interest. The phenomenon under
analysis is the photon transmission over random media. The one-dimensional
steady state transport equation is solved over a domain of (dimensionless)
length L. Due to the stochastic nature of the media involved, the solution
is computed N times, and statistics are taken afterwards. We consider two
different optimization problems. In the first one, the model output is scalar, a
global transmission coefficient. The second problem in addition computes its
variance. For both problems, the design variable x describes some behavior of
the random media considered. In the second case x is a vector with dimension
two and in the first one is the scalar obtained by keeping its second component
x2 equal to 5. The sets X and Z coincide and they are equal to [1, 10] and to
[1, 10]2 in the one and two dimensional case respectively.

The model is assumed to be fine enough for practical purposes when L = 1
and N = 100000. Different coarse models are obtained by taking smaller values
for these two parameters. This is shown in Figure 6 and Figure 7 where the

4The number of grid nodes in every case is approximately the same.
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Figure 6: Different models for the transmission coefficient. The second compo-
nent of the design variable x2 is kept constant and equal to 5. The length L
is taken as 1 in the left figure. The number of realizations N is 100000 for the
right plot.
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Figure 7: Different models for the transmission variance. The second component
of the design variable x2 is kept constant and equal to 5. The length L is taken
as 1 in the left figure. The number of realizations N is 100000 for the right plot.

transmission coefficient and its variance are computed for different values of L
and N . The second component of the design variable x2 is kept constant and
equal to 5. We observe that for the transmission coefficient L and N can be
reduced to a very low value without (apparently) losing much accuracy in the
model. The transmission variance is very sensitive to the varying of the length
L, but concerning the number of realizations N the behavior is analog to the
one observed in Figure 6. Thus, the same pair (L, N) can be acceptable for
computing the transmission coefficient but not for its variance.

We will take coarse models given by the pairs (L, N) = (0.01, 100000) and
(L, N) = (1, 100) for the first and second design problem respectively. The
first coarse model is around 30 times faster than the fine model and the sec-
ond one around 40 times. The difference in computational cost of the selected
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Table 5: Results for the one-dimensional photon transport based optimization.

#f evals. #c evals. F (·) Final design
Cobyla 27 40 0.000 9.1234

Nelder-Mead 30 34 0.000 9.1234

SM 6 300 0.000 9.1234

MM 5 155 0.000 9.1234

Table 6: An iteration history for the one-dimensional photon transport based
optimization.

SM MM

# iter. #(f , c) evals. (F (·), hk) #(f , c) evals. (F (·), hk)
1 (1, 26) (4.016, 4.1500) (1, 43) (4.016, 4.1500)

2 (2, 60) (3.740, 0.0587) (2, 83) (2.713, 1.7000)

3 (3, 76) (3.740, 0.0000) (3, 116) (0.254, 0.6970)

4 (4, 143) (0.018, 0.0712)

5 (5, 167) (0.000, 0.0049)

6 (6, 191) (0.000, 0.0000)

The coarse models employed are around 30 times faster than the fine one.
F (·) represents the cost function. The stopping criterion is in every case
hk = ‖xk+1 − xk‖2 < 10−4.

coarse models when compared with the those given by (L, N) = (0.01, 100) or
(L, N) = (0.9, 100) is almost inappreciable. The cost functions considered are
as in (8).

In the one-dimensional case we aim two different reachable designs. In the
first problem we take y = f(9.1234) = 5.3044 and the results obtained are shown
in Table 5. Both two-level approaches yield the fine optimum x∗

f but the speed-
up is only of around two for space-mapping and three for manifold-mapping.
For this problem, no faster coarse models are available. In some cases, N is
recommended to be at least 1000000. There we can depreciate the number of
coarse model evaluations when compared to those for the fine model and then
obtain higher speed-up values.

The space-mapping solution x∗
sm coincides with x∗

f because the design is
reachable, i.e., f(x∗

f ) = y. The space-mapping function p for the models used is
shown in Figure 2, labeled Coarse model 2 in the legend. It should be noticed
that p(x) = 1 for x . 2. We can easily see that p is injective in the region of
interest (see Figure 2 and Figure 6).

The specifications for the second design problem are y = f(2.0000) = 4.6044.
In this case the coarse model optimum is very close to one and because, in this
region p is not injective, we can expect space-mapping to fail. We check that
in Table 6 together with the expected correct behavior of manifold-mapping.
Space-mapping converges in only three iterations but to the wrong point 1.1173.
The other methods find the right answer. Nelder-Mead simplex needs 35 fine
model evaluations to reach the fine model optimum. The speed-up obtained
with manifold-mapping with respect to this one-level optimization procedure is
around two.
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Table 7: Results for a reachable two-dimensional photon optimization.

#f evals. #c evals. F (·)/Fs(·) Final design
Cobyla 37 45 0.000 / 0.092 (3.2428, 7.7157)T

Nelder-Mead 72 89 0.000 / 0.000 (3.4549, 7.6548)T

SMCob 3 200 0.000 / 0.095 (3.2405, 7.7164)T

SMNMS 13 1711 0.000 / 0.000 (3.4556, 7.6546)T

MM 6 436 0.000 / 0.000 (3.4507, 7.6560)T

Table 8: Results for a non-reachable two-dimensional photon optimization.

#f evals. #c evals. F (·)/Fs(·) Final design
Nelder-Mead 64 90 0.020 / 0.000 (1.0002, 5.7685)T

SM 4 468 0.020 / 0.000 (1.0015, 5.7680)T

MM 5 344 0.020 / 0.000 (1.0034, 5.7674)T

The coarse models employed are around 40 times faster than the fine ones. F (·)
represents the cost function. Fs(·) represents the scaled cost function. The
stopping criterion is in every case hk = ‖xk+1 − xk‖2 < 10−4.

In the two-dimensional problem we first try a reachable design. As men-
tioned before, the coarse model selected is the one given by (L, N) = (1, 100)
which is around 40 times faster than the fine model. The specifications are
y = f((3.4567, 7.6543)T ) = (7.0348, 0.0002)T . We observe from Figure 6 and
Figure 7 (and also from y) that the transmission variance takes values much
smaller than the transmission coefficient. This difference in size suggests that a
scaling could be necessary since the cost function considered gives more empha-
sis to the first component of every model than to the second one. Consequently,
values far away from the fine model optimum could yield, for practical purposes,
the same cost function value. The model response is scaled as follows. An av-
erage value of the transmission variance is first computed based on the coarse
model. Then, the output of both fine and coarse models is weighted according
to that value. From another perspective, a scaled cost function Fs(·) is used.
The results of this reachable two-dimensional optimization problem are shown
in Table 7.

First, it should be noted that Powell’s Cobyla method, with the obvious tun-
ing parameters, does not yield the fine model optimum5. The scaling could be
inadequate for this algorithm. We observe that space-mapping, combined with
Powell’s Cobyla (denoted in the table by SMCob) also fails, and we associate
this wrong behavior to the use of that one-level optimizer. This assumption
is corroborated by the fact that the Nelder-Mead simplex scheme leads space-
mapping to the fine model optimum (again perfect mapping holds). But this
alternative space-mapping (SMNMS) takes almost the same time as the one-
level Nelder-Mead simplex. Manifold-mapping represents a speed-up of around
four and this result is consistent with the one-dimensional case. If no scaling
is introduced, the problem is ill-conditioned and the solutions obtained differ
clearly from the fine optimum ((3.2784, 7.7052)T for Nelder-Mead simplex and

5The implementation chosen for Cobyla is the package by J.S. Roy. The source code can
be found at http://plato.la.asu.edu/topics/problems/nlores.html.
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(3.3043, 7.6975)T for manifold-mapping).
The manifold-mapping solution is slightly different to the precise optimum.

Even with the additional scaling, the matrices ∆F (see the manifold-mapping
algorithm, Figure 5) have very small singular values. Since we are interested
in computing the pseudoinverse of this matrix ∆F †, at a given point, the next
iterant can be found very far away from their predecessors. This behavior
clearly spoils convergence and can be prevented by the use of a trust region
methodology. The one implemented for this report is very simple: the inverse
of those singular values smaller than a given tolerance is taken as zero. Large
steps are then discouraged at the expense of precision in finding the optimum.
More involved trust region procedures may yield better results.

If manifold-mapping is applied with the same coarse model employed in the
one-dimensional problem, the solution (3.4516, 7.6557)T is obtained after 24
and 1855 fine and coarse model evaluations respectively. The associated com-
putational cost is even higher than that for one-level Nelder-Mead simplex. If
we use the model with (L, N) = (1, 100) just for computing the coarse model
optimum and then we continue with (L, N) = (0.01, 100000), the resulting pro-
cedure accelerates Nelder-Mead simplex by a factor of three ((3.4526, 7.6554)T

is obtained after 9 and 538 fine and coarse model evaluations). The conclusion
is that intermediate coarse models can be used for computing a better initial
guess that improves a previous observed speed-up.

We also try a non-reachable design, given by the specifications
y = (5, 0.004)T . Again the selected implementation of Powell’s Cobyla does
not yield results. The second component in the specifications is about 20 times
larger than in the reachable case and this seems to be enough for not needing
the additional weighting. The results without scaling are shown in Table 8. The
speed-up factors for space-mapping and manifold-mapping are five and four re-
spectively. With the use of scaling, the convergence behavior is about the same
and the limit point is (1.0000, 5.6710)T for space-mapping and (1.0007, 5.6967)T

for manifold-mapping. The coarse model given by (L, N) = (0.01, 100000)
yields also the correct answer with no scaling and using manifold-mapping but
after 13 and 1117 evaluations of the fine and coarse model respectively. If scaling
is applied, the solution differs significantly from x∗

f .
The difference in computational cost between the fine and coarse models

considered is not enough to fully exploit the advantages of the multi-level ap-
proach. Moreover, a really simple model as (L, N) = (1, 100) presents no im-
portant convergence problems in the two-level scheme. An intermediate model
would presumably be of not much help. If higher accuracy is desired in solving
the transport equations, the distance between the fine and coarse models will in-
crease, and then, a multi-level scheme might offer some noticeable improvement
over the two-level strategy.

4 Conclusions

Some optimization procedures can be accelerated by a sequence of inexpen-
sive approximations of the desired optima. We have introduced space-mapping
and manifold-mapping, two schemes that enhance the efficiency, with the use
of information from models with different levels of accuracy. Most of the time
space-mapping yields an acceptable approximation of the precise solution. How-
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ever, if we want to find the accurate optimum manifold-mapping should be used.
Two experiments have illustrated theory, in the two and three level approach,
and the effect of the choice from a great number of several coarse models has
been studied.
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[3] K. Böhmer and P. W. Hemker and H. J. Stetter, Defect Correction Meth-

ods: Theory and Applications, The defect correction approach, Computing
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